ORE Catapult guiding effective marine energy array configuration


The Offshore Renewable Energy (ORE) Catapult has developed a ‘decision tree’ to help guide designers and developers towards the most cost effective marine energy array configuration.

The decision tree is part of the Optimum Electrical Array Architectures report, which was produced by ORE Catapult with support from energy consultancy TNEI.

It looked at the existing electrical array options available for collecting and transmitting power from offshore marine devices back to shore.

The report evaluated how certain considerations, such as the choice of device type, size of project, and distance to the connection point dictates the best array architecture for the site.

Four existing architecture array options currently available for the connection of large scale marine energy devices were evaluated. They are:

  • Direct connection;
  • Star cluster with surface piercing platforms;
  • Star cluster with floating platforms; and
  • Radial arrays on seabed.

The project also identified that a number of technology development opportunities exist to further develop array architectures that will reduce the electrical infrastructure costs of future marine energy farms.

ORE Catapult said it is keen to work with industry to drive forward these development opportunities

ORE Catapult project manager Vicky Coy said: “One of the major challenges the marine industry faces is the design of a cost effective and efficient electrical network to collect and transmit power from multi-device wave and tidal arrays to shore.

“One solution is to connect each individual device to shore, but for arrays further from shore or with complex landfall conditions, a marine electrical array will need to be designed and built.

“The aim of the project was to identify a preferred marine electrical architecture that can be adopted by as many wave and tidal developments as possible.

“The final report concludes that currently there is no ‘one size fits all option’ that will suit every project, but using the ‘decision tree’ will help developers decide on the best, and most cost effective, array option for them.”

The reports can be downloaded at the following links:

Report 1: Landscape Map and Literature Review

Report 2: Review of SSE Contractor Reports

Report 3: Optimum Electrical Array Architectures

Sources: reNEWS, offshoreWIND